记录
使用如下python代码生成,注意修改路径,修改图片属性
# -*- coding: utf-8 -*-
import h5py
import os
import cv2
import math
import numpy as np
import random
import re
root_path = "/home/jiangwei/caffetest/mnist/test" #数据位置
list_file="/home/jiangwei/caffetest/mnist/test/test.txt" #数据集的列表文件
out_hdf5_file_dir='/home/jiangwei/caffetest/mnist/hdf5/' #hdf5文件保存位置
out_test_list='/home/jiangwei/caffetest/mnist/hdf5/testlist.txt' #生成的测试集列表文件路径
out_train_list='/home/jiangwei/caffetest/mnist/hdf5/trainlist.txt' #生成的训练集列表文件路径
out_mean_file='/home/jiangwei/caffetest/mnist/hdf5/mean.txt' #生成的均值文件保存位置
batchSize = 5000 #一个hdf5文件中存放多少张图片数据
with open(list_file, 'r') as f:
lines = f.readlines()
num = len(lines)
random.shuffle(lines)
imgAccu = 0
imgs = np.zeros([num, 3, 28, 28])
labels = np.zeros([num, 1])
for i in range(num):
line = lines[i]
segments = re.split('\s+', line)[:-1]
print i,":",segments[0]
img = cv2.imread(os.path.join(root_path, segments[0]))
img = cv2.resize(img, (28, 28))
img = img.transpose(2,0,1)
imgs[i,:,:,:] = img.astype(np.float32)
labels[i] = float(segments[1])
batchNum = int(math.ceil(1.0*num/batchSize))
imgsMean = np.mean(imgs, axis=0)
#imgs = (imgs - imgsMean)/255.0
labelsMean = np.mean(labels, axis=0)
labels = (labels - labelsMean)/10
if os.path.exists(out_train_list):
os.remove(out_train_list)
if os.path.exists(out_test_list):
os.remove(out_test_list)
comp_kwargs = {'compression': 'gzip', 'compression_opts': 1}
for i in range(batchNum):
start = i*batchSize
end = min((i+1)*batchSize, num)
if i < batchNum-1:
filename = out_hdf5_file_dir+'train{0}.h5'.format(i)
else:
filename = out_hdf5_file_dir+'test{0}.h5'.format(i-batchNum+1)
print filename
with h5py.File(filename, 'w') as f:
f.create_dataset('data', data = np.array((imgs[start:end]-imgsMean)/255.0).astype(np.float32), **comp_kwargs)
f.create_dataset('label', data = np.array(labels[start:end]).astype(np.float32), **comp_kwargs)
if i < batchNum-1:
with open(out_train_list, 'a') as f:
f.write(os.path.join(os.getcwd(), out_hdf5_file_dir+'train{0}.h5').format(i) + '\n')
else:
with open(out_test_list, 'a') as f:
f.write(os.path.join(os.getcwd(), out_hdf5_file_dir+'test{0}.h5').format(i-batchNum+1) + '\n')
imgsMean = np.mean(imgsMean, axis=(1,2))
with open(out_mean_file, 'w') as f:
f.write(str(imgsMean[0]) + '\n' + str(imgsMean[1]) + '\n' + str(imgsMean[2]))